On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating

نویسندگان

  • James V. Burke
  • Maijian Qian
چکیده

In previous work, the authors provided a foundation for the theory of variable metric proximal point algorithms in Hilbert space. In that work conditions are developed for global, linear, and super–linear convergence. This paper focuses attention on two matrix secant updating strategies for the finite dimensional case. These are the Broyden and BFGS updates. The BFGS update is considered for application in the symmetric case, e.g., convex programming applications, while the Broyden update can be applied to general monotone operators. Subject to the linear convergence of the iterates and a quadratic growth condition on the inverse of the operator at the solution, super–linear convergence of the iterates is established for both updates. These results are applied to show that the Chen–Fukushima variable metric proximal point algorithm is super–linearly convergent when implemented with the BFGS update.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proximal Quasi-Newton Methods for Nondifferentiable Convex Optimization

Some global convergence properties of a variable metric algorithm for minimization without exact line searches, in R. 23 superlinear convergent algorithm for minimizing the Moreau-Yosida regularization F. However, this algorithm makes use of the generalized Jacobian of F, instead of matrices B k generated by a quasi-Newton formula. Moreover, the line search is performed on the function F , rath...

متن کامل

A Theory of Secant Preconditioners

In this paper we analyze the use of structured quasi-Newton formulae as preconditioners of iterative linear methods when the inexact-Newton approach is employed for solving nonlinear systems of equations. We prove that superlinear convergence and bounded work per iteration is obtained if the preconditioners satisfy a Dennis-Moré condition. We develop a theory of LeastChange Secant Update precon...

متن کامل

W-convergence of the proximal point algorithm in complete CAT(0) metric spaces

‎In this paper‎, ‎we generalize the proximal point algorithm to complete CAT(0) spaces and show‎ ‎that the sequence generated by the proximal point algorithm‎ $w$-converges to a zero of the maximal‎ ‎monotone operator‎. ‎Also‎, ‎we prove that if $f‎: ‎Xrightarrow‎ ‎]-infty‎, +‎infty]$ is a proper‎, ‎convex and lower semicontinuous‎ ‎function on the complete CAT(0) space $X$‎, ‎then the proximal...

متن کامل

Super linear Projected Structured Exact Penalty Secant Methods for Constrained Nonlinear Least Squares

We present an exact penalty approach for solving constrained nonlinear least squares problems, using a new projected structured Hessian approximation scheme. We establish general conditions for the local two-step Q-superlinear convergence of our given algorithm. The approach is general enough to include the projected version of the structured PSB, DFP and BFGS formulas as special cases. The num...

متن کامل

Variable Metric Stochastic Approximation Theory

We provide a variable metric stochastic approximation theory. In doing so, we provide a convergence theory for a large class of online variable metric methods including the recently introduced online versions of the BFGS algorithm and its limited-memory LBFGS variant. We also discuss the implications of our results in the areas of eliciting properties of distributions using prediction markets a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2000